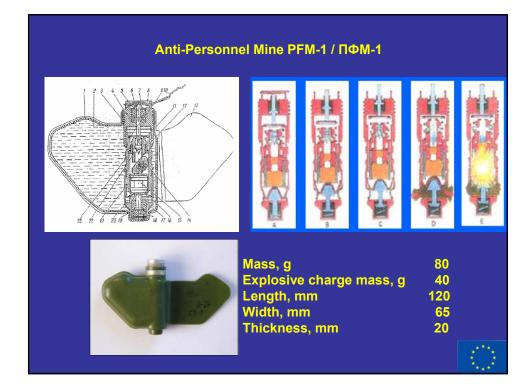
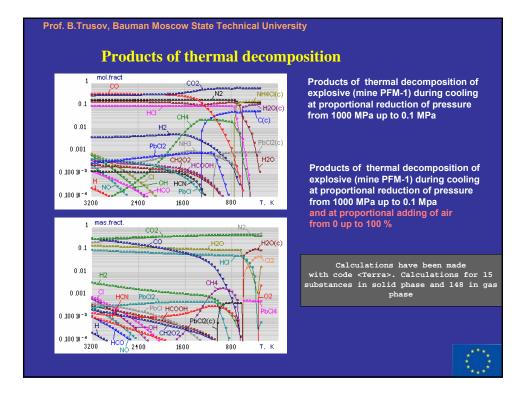

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>





201/27	7K3 WAR HEAD	
Ser	Operation	Level of hazard
1.	Unsealed and package locks unlocking	Safe
2.	Removal of package box cap	Safe
3.	Removal of coupling elements	Safe
4.	Extraction of ammunition out of package box	Unsafe
5.	Ammunition condition check	Unsafe
5.	Unscrewed of nose plug	Very dangerous
7.	Unscrewed of bottom plug	Very dangerous
3.	Unscrewed of explosive bolts	Very dangerous
).	Removal of nose cone	Very dangerous
10.	Unscrewed of tighten nut	Very dangerous
11.	Unscrewed of bottom	Very dangerous
12.	Extraction of ejecting charge	Very dangerous
13.	Extraction of frame with clips out of ammunition body	Very dangerous
14.	Separation of clips from frame	Very dangerous
15.	Installation of clips at elevator	Unsafe
6.	Remove of clips from elevator and install to shoot device	Very dangerous
17.	Extraction of clips debris after shooting	Safe


VS-6 SER	D CHEMICAL COMP	OSITION (four components aute	NAME	%	of comp	osition (of
(a)	(b)	(c)	(d)	1978	1981	1983	1987	198
1	Substance ATS according to OST V84-1499-77	O NO2 II I CH3 - C - O - CH2 - C - NO2 I NO2	trinitroethyl ether acetic acid	21	22	21	21	21
2	Substance K	NO2 NO2 1 NO2 + C - CH2 - O - CH2 - O - CH2 - C - NO2 1 NO2 + C - CH2 - O - CH2 - O - CH2 - C - NO2 1 NO2 + C - CH2 - O - O - O - O - O - O - O - O - O -	bistrinitroethyldimethoxymethane	7	7	8	7	8
3	MTEK	O NO2 II I CH3 - O - C - CH2 - CH2 - CH - NO2 I NO2	methyl ether trinitrobutyric acid	21	21	21	22	21
4	Substance KhK	NO ₂ NO ₂ 1 1 CI - C - CH ₂ - O - CH ₂ - O - CH ₂ - C - CI 1 NO ₂ NO ₂	bischlordinitroethyldimethoxymethane	50	50	50	50	50
5	Retarder DOS according to GOST 8728-88	C ₂₆ H ₅₀ O ₄	dioctylsebacinate	2,2	2,2	2,1	2,2	2,1

STCU project report

Ċ

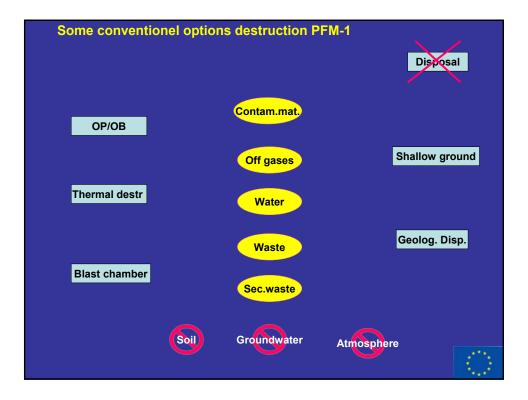
Types of ammunition, year of production, amount of mines

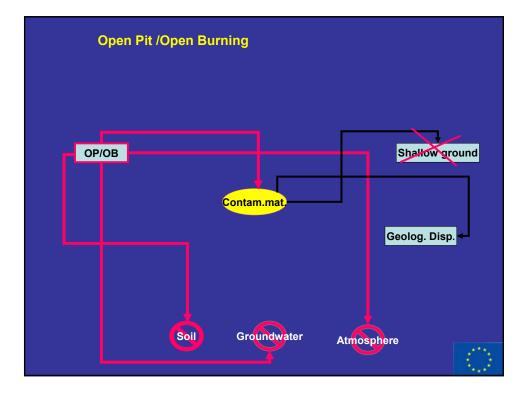
PFM-1 PFM-1s									
Engineering F	orce	KSF-1	(-1s)						
Year of prod	1983	1984	1985	1986	1987	1988	1989	Total ammo	Total mines at site
Name of site	 Margaret Sector 11 	10 10 80 M	210119020100			1.10000020	2010-212	at site	
Olshanitsa	128	1392	220		640			2380	171360
Ольшаніца					2740		3500	6240	399360
Balta		1392	1000	588	812			3792	273024
Балта								0	0
Gaysin	1888			1460	6600			9948	716256
Гайсин					600			600	38400
Yavoriv								0	0
Яворів						500		500	32000
Total at year	2016	2784	1220	2048	8052	0	0	16120	1160640
8	0	0	0	0	3340	500	3500	7340	469760
									1630400

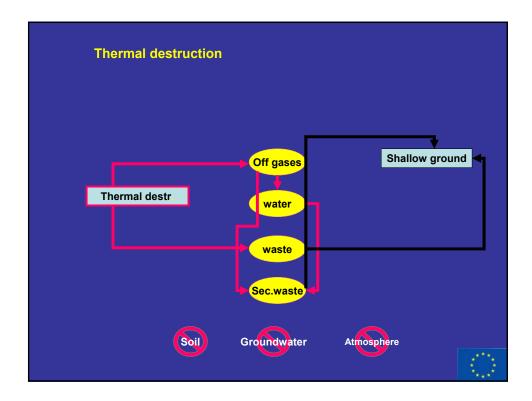
	OMPOSITION RNING OR OPEN DETON	ATION	
	CHEMICAL FORMULA	MOLE/KG	
	0 ₂	0,5	
	H ₂	0,5	
STCU project report	H ₂ O	6	
	Cl ₂	2,6*10-4	
	НСІ	1,6	
	СО	3,9	
	N ₂	3,3	
	COCl ₂	3,8*10-6	
	CO ₂	5,67	
	NO	0,98	
	CH ₂ O	1,36	
	HNO ₂	3,1*10-6	
	NH ₂	3,2*10 ⁻⁶	
	a	1,0	
	ОН	0,08	
	CH ₃ -NH-CH ₃	1,25*10-5	
	C ₆ H ₅ -NH ₂	5,5*10-6	
	Unidentified toxic substance (LCt ₅₀ =0,1 mg/l*min)	12,72	
	TOTAL	37,61	111
	TOTAL GAS RELEASE	842,46 l/kg	****

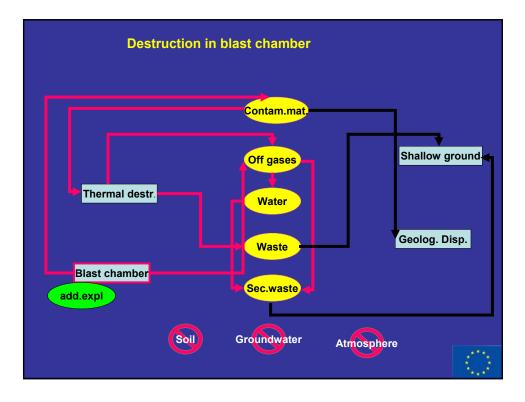
STCU project report

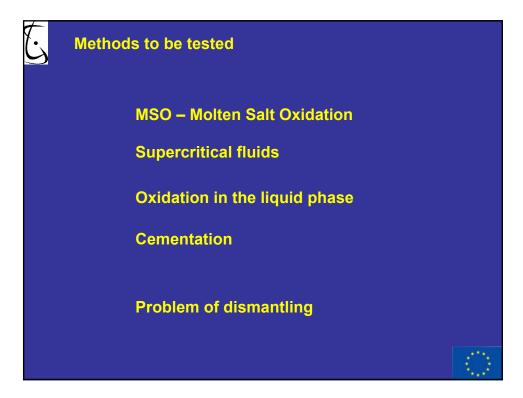

POTENTIAL OF DAMAGE CAUSED BY UNDESIRED EXPLOSION of PFM-1 AMMUNITIONS MILITARY SITES

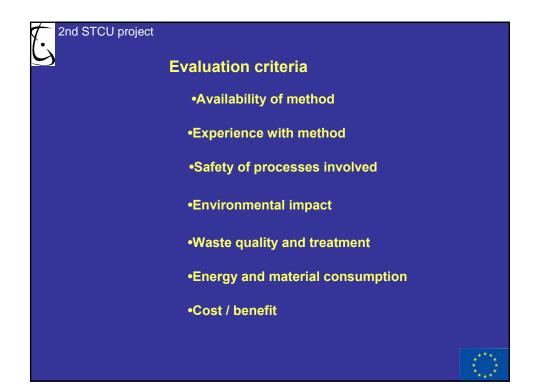

Olshanitsa - Kiev reg.


	pollution zon	e characteristics				
air stability level	Range, km	Square, sq. km	Population inside of zone			
Inversion	5,5	2,45	1000			
Isotherm	2,2	0,455	200			
Convection	1,3	0,312	125			
	ІМРАСТ МЕ	IMPACT MEN				
air stability level	Fatal	Hard injury	Light injury			
Inversion	350	400	250			
T (1	70	80	50			
Isotherm						


	STCU project report		
3	Impact o	f explosion	
Ser	Name of site	Radius of expl	osion impact, m
		shock wave	fragmentation
1	Olshanitsa - Kiev reg.	396	680
2	Balta - Odessa reg.	310	470
3	Gaysin - Vinnitsa reg.	434	780
4	Yavoriv - Lviv reg.	152	160
5	Dubievka - Cherkassy reg.	269	380
6	Voznesensk – Mikolayev reg.	190	225
7	Grechany - Khmelnitsky	393	670
8	Ludovka - Vinnitsa reg.	329	515
9	Dilyatin - Ivano-Frankovsk reg.	171	195
10	Tsvitokha - Slavuta Khmelnitsky reg.	586	1225
11	Znamyanka - Kirovograd reg.	392	667
12	Kalinivka - Vinnitsa reg.	422	750
13	Chudniv - Gitomir reg.	173	195







	max value	expl.cha m.	therm.dest	MSO	Ox.Liqu.	cementation	supercr.fluid
experience with PFM1	100					100	
on site	100		100	100	100	100	10
easy handling	100	100			50	80	50
no transport	100		100	100	100	100	10
no disassembling	100	100			50	100	50
no addit. charges	100		100	100	100	100	100
no after burner	100			100	100	100	10
no cyclon	100			100	100	100	10
no scrubber	100			100	100	100	7(
no second. Waste	100					100	10
no waste treatment	100		100	100	50	100	10
max. recycling	100	50	50	50	50	100	5(
no technical risk	100	70	100	40	40	100	4(
env. acceptab.	100	100	100	100	100	100	10
	1400	420	650	890	940	1380	1060

N	lext steps		
	Finalising 2nd project Decision about method	July 2004	
	Tender procedure	September 2004	
	Evaluation of bids	November 2004	
	Contracts	January 2005	
	Starting destruction	Spring 2005	